已知熱膨脹系數ε、流出系數C、節流孔直徑d、直徑比β,根據公式(1)即可求出最大差壓對應的孔板流量計瞬時流量。現將一臺差壓式孔板流量計放入工作環境中,已知工作介質為過熱蒸汽,設計狀態為壓力0.8MPa、溫度200℃,相關參數分別為內徑d=34.51mm、β=0.388098,在△pmax=60kPa下,ε=0.98157、C=0.60248。根據公式(1),求得qmmax,其中密度是根據IAPWS-IF97公式所得。變工況狀態下溫度為200℃時,壓力分別為0.7MPa、0.6MPa,另一變工況狀態下壓力為0.8MPa時,溫度分別為220℃、250℃。
1.熱膨脹系數與流出系數的影響
熱膨脹系數是給定一次裝置的給定直徑比,差壓式孔板流量計的熱膨脹系數只取決于壓力比和等熵指數,計算公式如下:
流出系數是裝置的實際流量與理論流量之間關系的系數,只與雷諾數有關,隨著雷諾數變大,流出系數會越來越小,隨著雷諾數變小,流出系數會越來越大,計算公式如公式(4)所示。對于不同的裝置,如果其幾何相似且雷諾數相同,那么流出系數就相同。
本文將該例中所有狀態下的熱膨脹系數和流出系數看做定值,均與設定狀態下最大流量對應的數值相同,瞬時流量結果如表1中的經驗值。從表1可以看出,在差壓為0.1倍最大值時,相對誤差最大,絕對值為1.84%,隨著差壓取值逐漸接近最大值,相對誤差越來越小。
2.孔板直徑平均線膨脹系數的影響
若流動狀態下測量管道的溫度與確定直徑時的溫度(該溫度稱之為參比端或校準溫度)有較大差異,在用公式計算孔板直徑、直徑比和流量時,應將管道的膨脹或者收縮考慮在內,具體公式如下:
公式中,d為流動狀態下一次裝置的直徑;d0為參比溫度下一次裝置的直徑;λD為一次裝置材料的平均線膨脹系數;T為流動狀態下一次裝置的溫度;T0為參比溫度或校準溫度。
本案例中孔板直徑的材質為不銹鋼,λd=0.000017。如果不考慮孔板直徑受溫度的影響,瞬時流量結果如表2中的經驗值所示,從表2中可以看出,相對誤差在最后一個檢定點,即壓力為0.8MPa、溫度為250℃時的相對誤差最大,絕對值為0.85%,從公式(5)中也可以看出,此時T-T0值最大,因此造成了較大的偏差,而在溫度沒有變化的情況下,相對誤差沒有隨著差壓及壓力值發生變化,因此可以得出孔板直徑平均線膨脹系數只與被測介質的溫度相關。
3.密度取值方法的影響
蒸氣密度可通過公式法、狀態方程法、查表法3種方法獲取[6]。其中,公式法使用的是IAPWS-IF97公式;狀態方程法使用的是理想氣體方程PV=nRT,應注意狀態方程法適用范圍較窄;查表法是使用《國際單位制的水和水蒸氣的性質》中的數據,并進行線性插值從而得出蒸汽的密度,這個方法比公式法及狀態方程法方便,但會產生一定的偏差。表3中,標準值的密度取值方法采取公式法,經驗值的密度通過查表所得,從結果看出,每個檢定點的相對誤差都較小,最大相對誤差的絕對值沒有超過0.1%,
因此平常做差壓式孔板流量計的檢定時,為求方便,密度的求取方式可采取查表法。